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In recent years, several methods have been proposed to detect compromised items (CI) and 
examinees with preknowledge (EWP) simultaneously. However, most of these methods are 
limited in one of two ways: (1) The method was specifically designed for non-adaptive 
tests and might therefore not be suitable for adaptive tests, or (2) the method involves the 
analysis of more than just the item scores. In this paper, a new method is developed for 
computerized adaptive tests that requires only an analysis of the item scores. The perfor-
mance of the method is evaluated using simulations in which several factors are manip-
ulated, such as test length, the percentage of CI, the percentage of EWP, and EWP ability 
distribution. Across most conditions, the method is shown to produce reasonable false 
positive rates and favorable true positive rates for both items and examinees. 
Keywords: computerized adaptive testing, item compromise, item preknowledge, test 
fraud, test security 
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In educational and psychological testing, validity refers to “the degree to which evidence and 
theory support the interpretations of test scores for proposed uses of tests” (p. 11), while fairness 
requires the removal of “construct-irrelevant barriers to maximal performance for any examinee” 
(American Educational Research Association et al., 2014, p. 63). Item preknowledge—which  
refers to a situation in which examinees have had access to items and/or answers prior to taking a 
test—poses a direct threat to both test fairness and validity. Consequently, there has been growing 
interest in the development of methods for detecting compromised items (CI; e.g., Choe et al., 
2018; van der Linden & Belov, 2023; Zhang, 2014; Zhang & Li, 2016), examinees with 
preknowledge (EWP; e.g., Man & Harring, 2023; Sinharay, 2017; Sinharay & Johnson, 2020), and 
CI and EWP simultaneously (e.g., Belov, 2014; Boughton et al., 2017; Chen et al., 2022; Gorney 
et al., 2023; O’Leary & Smith, 2017; Pan et al., 2022; Pan & Wollack, 2023). 

This paper focuses on the problem of simultaneously detecting CI and EWP, which is easily 
the most challenging—yet arguably most realistic—scenario. Although several methods have been 
proposed for this purpose, most are limited in one of two ways: (1) The method was specifically 
designed for non-adaptive tests, or (2) the method involves the analysis of more than just the item 
scores. The first limitation is problematic because methods designed for non-adaptive tests might 
not be suitable for adaptive tests, where much of the data are missing since different examinees 
are administered different items. The second limitation can be problematic because information 
beyond the item scores is not always trustworthy or available. For example, the method of Gorney 
et al. (2023) involves the analysis of item distractors, which are not available for all item types. 
Meanwhile, the methods of Boughton et al. (2017), Chen et al. (2022), Pan et al. (2022), and Pan 
and Wollack (2023) involve the analysis of item response times. Item response times are 
increasingly available in computer-based tests; however, they might not always be trustworthy due 
to the potential for examinees to “fake” realistic response times by altering their behavior. There-
fore, the purpose of this paper was to develop a new method for detecting CI and EWP that 
addresses both limitations of previous research. The new method is specifically designed for 
computerized adaptive tests (CATs) and requires only an analysis of the item scores.  

 

Method 
The proposed method follows the general framework of Gorney et al. (2023) for detecting CI 

and EWP. The framework consists of three steps and is illustrated in Figure 1. 
1. Initial item flagging: Identify an initial set of items that are suspected of being 

compromised. 
2. Examinee flagging: Use the set of compromised items to identify the set of examinees 

who are suspected of having preknowledge. 
3. Item flagging: Use the set of examinees with preknowledge to refine the set of items that 

are suspected of being compromised. 
The procedure is iterative in that Steps 2 and 3 are repeated until user-defined criteria are satisfied. 

The procedure is terminated when one of the following conditions is satisfied: (1) Too few 
items are flagged, (2) too many items are flagged, or (3) the exact set of items has already been 
flagged in a previous iteration. Following Gorney et al. (2023), an item set is defined to be of 
“reasonable size” when it consists of at least 4 items. Thus, condition 1 is satisfied if fewer than 4 
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Figure 1. Proposed Method to Detect CI and EWP 
 

 
 

items are flagged, and condition 2 is satisfied if more than 𝐼𝐼 − 4 items are flagged, where 𝐼𝐼 is the 
size of the item bank. Finally, note that if the procedure is terminated due to condition 1, then no 
solution is returned, meaning that no items or examinees are flagged. However, if the procedure is 
terminated due to condition 2 or 3, then the most recent set of flagging results is returned and 
reported as the solution. 
 
Step 1: Initial Item Flagging 
 

To identify the initial set of items that are suspected of being compromised, variations of the 
sequential procedures of Zhang (2014) and Zhang and Li (2016) are employed. Sequential 
procedures are appropriate for monitoring changes in the properties of an item over time—in this 
case, the question is whether an item appears to be becoming easier over time, which might occur 
if the item has been compromised. 

The classical test theory (CTT)-based sequential procedure (Zhang, 2014) monitors the 
difficulty of an item over time by comparing the observed proportion of correct responses for a 
target sample of examinees to the observed proportion of correct responses for a reference sample 
of examinees for whom the item is assumed not to have been compromised. The target sample is 
taken as the most recent 𝑚𝑚 examinees who were administered the item, while the reference sample 
is taken as the first 𝑛𝑛 −𝑚𝑚 examinees who were administered the item, where 𝑛𝑛 is the total number 
of examinees to whom the item has been administered. Then, for item 𝑖𝑖, the test statistic 

 

 𝑍𝑍𝑖𝑖
(𝑛𝑛) =

𝑝𝑝𝑖𝑖
(𝑛𝑛−𝑚𝑚+1,𝑛𝑛) − 𝑝𝑝𝑖𝑖

(1,𝑛𝑛−𝑚𝑚)

�𝑝𝑝𝑖𝑖
(1,𝑛𝑛−𝑚𝑚)[1 − 𝑝𝑝𝑖𝑖

(1,𝑛𝑛−𝑚𝑚)]
�𝑚𝑚(𝑛𝑛 −𝑚𝑚)

𝑛𝑛
 (1) 

 
is constructed, where 
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𝑝𝑝𝑖𝑖
(𝑛𝑛−𝑚𝑚+1,𝑛𝑛) =

1
𝑚𝑚
� 𝑋𝑋𝑗𝑗𝑗𝑗

𝑛𝑛

𝑗𝑗=𝑛𝑛−𝑚𝑚+1
  (2)  

 
is the proportion of correct responses in the target sample,  
 

𝑝𝑝𝑖𝑖
(1,𝑛𝑛−𝑚𝑚) =

1
𝑛𝑛 −𝑚𝑚

� 𝑋𝑋𝑗𝑗𝑗𝑗
𝑛𝑛−𝑚𝑚

𝑗𝑗=1
 (3) 

 
is the proportion of correct responses in the reference sample, and 𝑋𝑋𝑗𝑗𝑗𝑗 ∈ {0,1} is the score of 
examinee 𝑗𝑗 on item 𝑖𝑖. 

The item response theory (IRT)-based sequential procedure (Zhang & Li, 2016) is similar to 
the CTT-based sequential procedure in that it monitors the difficulty of an item over time. How-
ever, for the IRT-based sequential procedure, difficulty is monitored by comparing the observed 
number of correct responses to the expected number of correct responses for a target sample of 
examinees, where the expected number is estimated using an IRT model. Then, for item 𝑖𝑖, the test 
statistic 

 

 𝑌𝑌𝑖𝑖
(𝑛𝑛) =

∑ [𝑋𝑋𝑗𝑗𝑗𝑗 − 𝑝𝑝𝑖𝑖(𝜃𝜃�𝑗𝑗)]𝑛𝑛
𝑗𝑗=𝑛𝑛−𝑚𝑚+1

�∑ 𝑝𝑝𝑖𝑖(𝜃𝜃�𝑗𝑗)𝑛𝑛
𝑗𝑗=𝑛𝑛−𝑚𝑚+1 [1 − 𝑝𝑝𝑖𝑖(𝜃𝜃�𝑗𝑗)]

 (4) 

 
is constructed, where 𝑝𝑝𝑖𝑖(𝜃𝜃�𝑗𝑗) is the estimated probability of a correct response for examinee 𝑗𝑗 on 
item 𝑖𝑖 given the examinee ability estimate 𝜃𝜃�𝑗𝑗 . For example, under the Rasch model, the probability 
of a correct response is assumed to be 

 

 𝑝𝑝𝑖𝑖�𝜃𝜃𝑗𝑗� = 𝑃𝑃�𝑋𝑋𝑗𝑗𝑗𝑗 = 1�𝜃𝜃𝑗𝑗� =
exp�𝜃𝜃𝑗𝑗 − 𝑏𝑏𝑖𝑖�

1 + exp�𝜃𝜃𝑗𝑗 − 𝑏𝑏𝑖𝑖�
 , (5) 

 
where 𝑏𝑏𝑖𝑖 is the difficulty parameter of item 𝑖𝑖 and 𝜃𝜃𝑗𝑗  is the ability parameter of examinee 𝑗𝑗. Thus, 
𝑝𝑝𝑖𝑖(𝜃𝜃�𝑗𝑗) is obtained by inserting 𝜃𝜃�𝑗𝑗  into Equation 5. 

The 𝑍𝑍𝑖𝑖
(𝑛𝑛) and 𝑌𝑌𝑖𝑖

(𝑛𝑛) statistics are appropriate for testing whether an item is easier than expected 
at a specific time point; however, in a CAT program, items are often administered to examinees 
continuously and at different time points. Therefore, to monitor the difficulty of an item over time, 
the 𝑍𝑍𝑖𝑖

(𝑛𝑛) and 𝑌𝑌𝑖𝑖
(𝑛𝑛) statistics can be computed at multiple time points. Large positive values of 𝑍𝑍𝑖𝑖

(𝑛𝑛) 
and 𝑌𝑌𝑖𝑖

(𝑛𝑛) indicate that the item was easier than expected and might therefore have been compro-
mised. 

When applying the CTT- or IRT-based sequential procedures, it is necessary to define the 
critical values that determine what constitute “large positive values” of 𝑍𝑍𝑖𝑖

(𝑛𝑛) and 𝑌𝑌𝑖𝑖
(𝑛𝑛), respectively. 
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Zhang (2014) and Zhang and Li (2016) compared the use of several predetermined critical values, 
and in doing so applied the same critical value to every item. In contrast, in the proposed method, 
monte-carlo simulations are used to obtain separate critical values for each item (e.g., Kang, 2023). 
Specifically, for a given item bank, a null dataset (i.e., a dataset with no unusual behavior) is 
simulated, and the 𝑍𝑍𝑖𝑖

(𝑛𝑛) and 𝑌𝑌𝑖𝑖
(𝑛𝑛) statistics are computed using a target sample size of 𝑚𝑚 = 50 and 

an initial monitoring point of 𝑛𝑛0 = 60, meaning that each item starts being monitored once it has 
been administered to 60 examinees. Then, for each item, the maximum values of 𝑍𝑍𝑖𝑖

(𝑛𝑛) and 𝑌𝑌𝑖𝑖
(𝑛𝑛) 

across all time points are recorded. This process of simulating and analyzing null data is repeated 
1,000 times, and the 95th percentiles of the resulting distributions are taken as the empirical critical 
values. 
 
Step 2: Examinee Flagging 
 

To identify the set of examinees who are suspected of having preknowledge, the signed 
likelihood ratio test statistic proposed by Sinharay (2017) is employed. This statistic has attractive 
theoretical properties (e.g., its asymptotic null distribution is known) and has been shown to 
perform well against competing statistics (e.g., Sinharay, 2017). It is appropriate for testing the 
equality of examinee ability over two sets of items—in this case, the set of compromised items (𝐶𝐶) 
and the set of secure (or non-compromised) items (𝑆𝑆). 

Let 𝜃𝜃�𝑗𝑗
(𝐶𝐶), 𝜃𝜃�𝑗𝑗

(𝑆𝑆), and 𝜃𝜃�𝑗𝑗 denote the ability estimates of examinee 𝑗𝑗 based on 𝐶𝐶, 𝑆𝑆, and all items, 
respectively. The signed likelihood ratio test statistic for testing 𝐻𝐻0:𝜃𝜃𝑗𝑗

(𝐶𝐶) = 𝜃𝜃𝑗𝑗
(𝑆𝑆) against 𝐻𝐻1:𝜃𝜃𝑗𝑗

(𝐶𝐶) >
𝜃𝜃𝑗𝑗

(𝑆𝑆) is given by 

 𝐿𝐿𝑗𝑗 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃�𝑗𝑗
(𝐶𝐶) − 𝜃𝜃�𝑗𝑗

(𝑆𝑆))�2[ℓ(𝜃𝜃�𝑗𝑗
(𝐶𝐶),𝜃𝜃�𝑗𝑗

(𝑆𝑆)) − ℓ(𝜃𝜃�𝑗𝑗)] , (6) 

 
where ℓ(𝜃𝜃�𝑗𝑗

(𝐶𝐶),𝜃𝜃�𝑗𝑗
(𝑆𝑆)) is the log-likelihood of the item scores at 𝜃𝜃�𝑗𝑗

(𝐶𝐶) and 𝜃𝜃�𝑗𝑗
(𝑆𝑆), and ℓ(𝜃𝜃�𝑗𝑗) is the log-

likelihood of the item scores at 𝜃𝜃�𝑗𝑗 . 
Under the null hypothesis of no preknowledge, the 𝐿𝐿𝑗𝑗 statistic has an asymptotic N(0,1) 

distribution. A large positive value of 𝐿𝐿𝑗𝑗 indicates that the examinee performed better on the set of 
compromised items than on the set of secure items and might therefore have benefitted from item 
preknowledge. 
 
Step 3: Item Flagging 
 

To refine the set of items that are suspected of being compromised, logistic regression is 
employed. Logistic regression is commonly used to detect differential item functioning (DIF) 
across two groups of examinees (e.g., Swaminathan & Rogers, 1990; Zumbo, 1999)—in this case, 
the EWP (i.e., the focal group) and the non-EWP (i.e., the reference group). Unlike some other 
DIF detection procedures, logistic regression does not require matching examinees based on total 
score (which is inappropriate in CAT since different examinees are administered different items), 
nor does it require very large sample sizes. 
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The logistic regression model used in this paper1 can be expressed as 

 ln�
𝑝𝑝𝑗𝑗𝑗𝑗

1 − 𝑝𝑝𝑗𝑗𝑗𝑗
� = 𝛽𝛽0 + 𝛽𝛽1𝜃𝜃𝑗𝑗 + 𝛽𝛽2𝑔𝑔𝑗𝑗 , (7) 

where 𝑝𝑝𝑗𝑗𝑗𝑗 is the probability of examinee 𝑗𝑗 responding to item 𝑖𝑖 correctly given 𝜃𝜃𝑗𝑗  and 𝑔𝑔𝑗𝑗, and 𝑔𝑔𝑗𝑗 
represents group membership and is equal to 1 if the examinee is suspected of having pre-
knowledge and 0 otherwise. An item is said to exhibit DIF if examinees who have the same ability, 
but belong to different groups, have different probabilities of answering the item correctly. To test 
for DIF, the compact model is first specified as the logistic regression model with only 𝛽𝛽0 and 𝛽𝛽1 
and the augmented model is specified as the logistic regression model with 𝛽𝛽0, 𝛽𝛽1, and 𝛽𝛽2. An item 
is statistically significant if the product of −2 and the difference between the log-likelihoods of the 
compact and augmented models exceeds the critical value corresponding to a 𝜒𝜒2 distribution with 
one degree of freedom. Jodoin and Gierl (2001) further provided an effect size measure, 𝑅𝑅2𝛥𝛥, for 
assessing practical significance. They also developed the following criteria: 

1. Negligible DIF if the item is not statistically significant or 𝑅𝑅2𝛥𝛥 < 0.035. 
2. Moderate DIF if the item is statistically significant and 0.035 ≤ 𝑅𝑅2𝛥𝛥 < 0.070. 
3. Large DIF if the item is statistically significant and 𝑅𝑅2𝛥𝛥 ≥ 0.070. 

In the proposed method, a significance level of 𝛼𝛼 = 0.05 is used, and moderate and/or large DIF 
items are flagged as potentially compromised. 
 
Unique Features of the Proposed Method 
 

Although the proposed method is similar to that of Gorney et al. (2023), there are important 
differences in the ways the two methods are implemented. First, the method of Gorney et al. 
involves the analysis of item scores and distractors and is thus only suitable for certain item types. 
In contrast, the present method requires only the analysis of item scores and is thus suitable for a 
wider variety of item types. Second, the statistics used in Step 1 of the method of Gorney et al. are 
only computed at a single time point and are thus not intended to monitor changes over time. In 
contrast, the statistics used in Step 1 of the present method are computed at multiple time points, 
which might be useful in situations where the items are administered continuously. Finally, the 
statistics used in Step 3 of the method of Gorney et al. require matching examinees based on total 
score. In contrast, the statistics used in Step 3 of the present method do not require such matching 
and are thus more appropriate for CAT data. 

Study 1: Comparing Settings 
Design and Analysis 

To examine the performance of the proposed method, two simulation studies were conducted. 
The purpose of the first study was to compare the performance of the proposed method when 
different settings were used in each of the three steps. Conditions were created by manipulating 

 
1It is possible to add an interaction term to the logistic regression model in Equation 7 to test for non-uniform DIF. 
However, in the proposed method, the simplifying assumption is made that preknowledge tends to benefit—rather 
than harm—examinees. 
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the following factors: test length (20, 40, 80), sequential procedure used in Step 1 (IRT, CTT), 
examinee significance level used in Step 2 (0.010, 0.025, 0.050), and type of DIF flagged in Step 
3 (moderate/large, large). The four factors were fully crossed, resulting in a total of 36 (3 × 2 × 3 
× 2) conditions that were then replicated 100 times. 

Item scores were generated using the Rasch model. The item difficulty parameters were 
sampled such that 𝑏𝑏𝑖𝑖~N(0,1) and the examinee ability parameters were sampled such that 
𝜃𝜃𝑗𝑗~N(0,1). The size of the item bank was 10 times the length of the test. For example, for a test 
length of 40 items, the item bank was comprised of 400 items. 

For each replication, 5,000 examinees were simulated, where 10% of the examinees had 
preknowledge of 20% of the items in the item bank—the extent to which these percentages affect 
the results is investigated in Study 2. The EWP were selected with probabilities proportional to the 
order in which they were administered the test. Thus, the first examinee to take the test had the 
smallest probability of having preknowledge, while the last examinee to take the test had the largest 
probability of having preknowledge. The CI were randomly selected from all items in the item 
bank and were assumed to be the same for all EWP. When an EWP was administered a CI, the 
probability of a correct response was 0.9, as in, for example, Gorney et al. (2023), Pan et al. (2022), 
and Pan and Wollack (2023). 

For each CAT administration, the initial item was randomly selected as one of 10 maximally 
informative items at 𝜃𝜃 = 0. Subsequent items were selected using the maximum Fisher infor-
mation criterion at the interim θ estimate, subject to a maximum item exposure rate of 0.20. 
Examinee ability parameters were estimated using maximum likelihood estimation, where esti-
mates were bounded between −4 and 4. Thus, examinees with all correct scores received a θ  
estimate of 4, while examinees with all incorrect scores received a θ  estimate of −4. 

To evaluate the performance of the proposed method, the false positive rate (FPR) and true 
positive rate (TPR) were computed for both items and examinees. For items, the FPR represents 
the proportion of secure items that were incorrectly flagged as compromised, while the TPR repre-
sents the proportion of CI that were correctly flagged as such. For examinees, the FPR represents 
the proportion of non-EWP who were incorrectly flagged as having preknowledge, while the TPR 
represents the proportion of EWP who were correctly flagged as such. 
 
Results 
 

Tables 1 and 2 display flagging rates for the items and examinees, respectively. Each row 
corresponds to a different combination of sequential procedure, type of DIF, and examinee 
significance level. Each column corresponds to a different combination of test length and outcome 
measure. 

Table 1 reveals that the FPRs for the items were consistently smaller than the item significance 
level that was used in Step 3 (𝛼𝛼 = .05). This result is not entirely surprising, given that an item 
needed to display both statistical and practical significance in order to be flagged as compromised. 
Table 2 reveals that the FPRs for the examinees tended to be smaller, but were occasionally larger, 
than the examinee significance level that was used in Step 2. For example, when the examinee 
significance level was  α = .05, moderate/large DIF was flagged, and the test length was 40 or 80 
items, the FPR was consistently larger than .05. One possible explanation for this result is as 
follows. Consider that the use of a larger examinee significance level typically produces a flagged 
sample of examinees with a smaller EWP to non-EWP ratio. Similarly, the flagging of items that 
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exhibit moderate/large DIF (rather than just large DIF) typically produces a flagged sample of 
items with a smaller CI to secure items ratio. In such samples, the preknowledge signal is obscured 
and is therefore more difficult to detect. Thus, it is not surprising that these conditions tended to 
produce suboptimal results. 

 
 

Table 1. Item Flagging Rates for Study 1 

    20 Items  40 Items  80 Items 

Seq. Proc. DIF Examinee Sig. Level  FPR TPR  FPR TPR  FPR TPR 

IRT Moderate/Large .010  .001 .100  .001 .199  .000 .396 
  .025  .011 .210  .012 .318  .006 .478 
  .050  .040 .295  .029 .341  .014 .446 
 Large .010  .000 .038  .000 .071  .000 .094 
  .025  .000 .083  .000 .113  .000 .137 
  .050  .012 .189  .013 .236  .002 .190 
CTT Moderate/Large .010  .000 .002  .000 .017  .000 .021 
  .025  .002 .011  .008 .060  .011 .078 
  .050  .047 .096  .045 .109  .035 .099 
 Large .010  .000 .000  .000 .002  .000 .001 
  .025  .000 .000  .000 .006  .000 .003 
  .050  .008 .028  .019 .056  .005 .023 

 
Tables 1 and 2 further reveal that the TPRs for both items and examinees were larger when the 

test was longer, the IRT-based sequential procedure was used in Step 1, a larger examinee signifi-
cance level was used in Step 2, and moderate/large DIF was flagged in Step 3. The superior perfor-
mance of the IRT-based sequential procedure is not surprising, given that (1) the null data were 
simulated using an IRT model and (2) the use of the CTT-based sequential procedure involves the 
assumption that the data of the reference group are uncontaminated by preknowledge. In reality—
as in the simulations—it is possible for this assumption to be violated. 

The larger TPRs associated with larger examinee significance levels and moderate/large DIF 
are also not surprising, given that these settings apply less stringent criteria when flagging exam-
inees and items. However, it is important to balance the reward of a large TPR with the risk of an 
increased FPR. Therefore, in the next set of simulations, only the IRT-based sequential procedure 
is used with an examinee significance level of 𝛼𝛼 = .025 and moderate/large DIF, as this combi-
nation of settings was found to produce the largest TPRs while also maintaining reasonable FPRs. 
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Table 2. Examinee Flagging Rates for Study 1 

    20 Items  40 Items  80 Items 

Seq. Proc. DIF Examinee Sig. Level  FPR TPR  FPR TPR  FPR TPR 

IRT Moderate/Large .010  .001 .101  .003 .263  .006 .572 
  .025  .009 .202  .020 .403  .028 .706 
  .050  .038 .294  .062 .485  .066 .735 
 Large .010  .000 .057  .001 .147  .002 .255 
  .025  .003 .135  .006 .252  .010 .392 
  .050  .026 .260  .051 .436  .043 .549 
CTT Moderate/Large .010  .000 .001  .000 .027  .000 .033 
  .025  .001 .011  .007 .082  .016 .125 
  .050  .028 .068  .052 .141  .071 .193 
 Large .010  .000 .000  .000 .006  .000 .005 
  .025  .000 .000  .000 .016  .000 .012 
  .050  .009 .035  .033 .106  .020 .083 

 
 

Study 2: Preknowledge Characteristics 
Design and Analysis 

The purpose of the second study was to apply the best combination of settings from Study 1 to 
examine their performance for different types of simulated preknowledge. Thus, the IRT-based 
sequential procedure was used in Step 1, the examinee significance level of 𝛼𝛼 = .025 was used in 
Step 2, and moderate/large DIF was flagged in Step 3. Conditions were created by manipulating 
the following factors: test length (20, 40, 80), percentage of CI (10, 20, 40), percentage of EWP 
(10, 30), and EWP ability distribution (same as non-EWP, lower than non-EWP). The four factors 
were fully crossed, resulting in 36 (3 × 3 × 2 × 2) preknowledge conditions. A null condition in 
which no preknowledge was simulated was also included for each of the three test lengths. Thus, 
39 conditions were studied in total, each of which was replicated 100 times. 

The data generating process was nearly identical to that of Study 1. The only differences were 
as follows: 

1. The percentage of CI and the percentage of EWP varied depending on the condition. 
2. When the EWP ability distribution was simulated to be the same as that of the non-EWP, 

the EWP were selected exactly as in Study 1. However, when the EWP ability distribution 
was simulated to be lower than that of the non-EWP, the EWP were selected from those 
examinees with 𝜃𝜃 ≤ 0 with probabilities proportional to the order in which they took the 
test. Thus, the first examinee to take the test with 𝜃𝜃 ≤ 0 had the smallest non-zero prob-
ability of having preknowledge, the last examinee to take the test with 𝜃𝜃 ≤ 0 had the largest 
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probability of having preknowledge, and the examinees with 𝜃𝜃 > 0 had zero probability of 
having preknowledge. 

 
Results 
 

Tables 3 and 4 display flagging rates for the items and examinees, respectively. Each row cor-
responds to a different combination of EWP ability distribution, percentage of CI, and percentage 
of EWP. Each column corresponds to a different combination of test length and outcome measure. 

Table 3 reveals that, as in Study 1, the FPRs for the items were consistently smaller than the 
item significance level that was used in Step 3 (𝛼𝛼 = .05). This result is encouraging, as it shows 
that the method successfully limited the proportion of secure items that were incorrectly flagged 
as compromised. Table 4 reveals that the FPRs for the examinees tended to be smaller, but were 
sometimes larger, than the examinee significance level that was used in Step 2 (𝛼𝛼 = .025). Larger 
FPRs were associated with longer tests and larger percentages of EWP. 
 

Table 3. Item Flagging Rates for Study 2 

    20 Items  40 Items  80 Items 

Condition % CI % EWP  FPR TPR  FPR TPR  FPR TPR 

Null 0 0  .003 –  .012 –  .022 – 
EWP same ability 10 10  .009 .127  .020 .196  .015 .229 
  30  .038 .804  .027 .924  .005 .986 
 20 10  .011 .210  .012 .318  .006 .478 
  30  .043 .834  .011 .944  .002 .988 
 40 10  .005 .253  .004 .323  .004 .366 
  30  .031 .728  .005 .834  .002 .819 
EWP lower ability 10 10  .012 .166  .025 .314  .010 .380 
  30  .036 .874  .021 .857  .006 .800 
 20 10  .015 .259  .016 .455  .002 .688 
  30  .035 .970  .009 .972  .002 .944 
 40 10  .009 .375  .003 .526  .001 .596 
  30  .032 .954  .008 .981  .003 .958 

 
Tables 3 and 4 further reveal that the TPRs for both items and examinees were larger when the 

test was longer, the percentages of CI and EWP were larger, and the EWP ability distribution was 
lower than that of the non-EWP. These results are not surprising, because (1) Increasing the 
percentages of CI and EWP produces a stronger preknowledge signal that is therefore easier to 
detect, (2) simulating preknowledge exclusively in lower ability examinees also produces a 
stronger preknowledge signal since these examinees should have the most to gain, and (3) similar 
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findings have been reported in previous research on both CATs (e.g., Pan et al., 2022) and non-
adaptive tests (e.g., Gorney et al., 2023). 

 
Table 4. Examinee Flagging Rates for Study 2 

    20 Items  40 Items  80 Items 

Condition % CI % EWP  FPR TPR  FPR TPR  FPR TPR 

Null 0 0  .001 –  .008 –  .027 – 
EWP same ability 10 10  .006 .065  .019 .117  .032 .242 
  30  .021 .198  .035 .395  .030 .720 
 20 10  .009 .202  .020 .403  .028 .706 
  30  .029 .411  .029 .728  .026 .942 
 40 10  .009 .512  .014 .740  .020 .860 
  30  .021 .658  .021 .903  .023 .978 
EWP lower ability 10 10  .007 .068  .026 .180  .032 .448 
  30  .020 .260  .033 .441  .031 .721 
 20 10  .013 .174  .031 .431  .031 .880 
  30  .031 .522  .029 .781  .028 .960 
 40 10  .014 .533  .019 .773  .023 .923 
  30  .027 .796  .025 .965  .025 .999 

 

Discussion 
In recent years, several methods have been proposed to detect CI and EWP simultaneously. 

However, most of these methods are limited in one of two ways: (1) The method was specifically 
designed for non-adaptive tests and might therefore not be suitable for adaptive tests or (2) the 
method involves the analysis of more than just the item scores. In this paper, both limitations of 
previous research were addressed, and a new method was developed specifically for CATs that 
requires only an analysis of the item scores. 

To examine the performance of the proposed method, two simulation studies were conducted. 
In Study 1, performance was examined when different settings were used in each of the three steps. 
Results showed that for most settings, the method produced small and reasonable FPRs for both 
items and examinees. In addition, the TPRs were largest when the IRT-based sequential procedure 
was used in Step 1, a larger examinee significance level was used in Step 2, and moderate/large 
DIF was flagged in Step 3. 

In Study 2, the best combination of settings from Study 1 was taken and applied to different 
types of simulated preknowledge. Results again showed that the method tended to produce small 
and reasonable FPRs for both items and examinees. Furthermore, the TPRs were largest when the 
test was longer, the percentages of CI and EWP were larger, and the EWP ability distribution was 
lower than that of the non-EWP. Each of these findings paralleled those found in previous research 
on both CATs (e.g., Pan et al., 2022) and non-adaptive tests (e.g., Gorney et al., 2023). 
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There are several limitations to this research, providing many opportunities for future study. 
First, although the simulation results suggest that the new method is promising, it is important to 
study its performance using real CAT data, especially data for which the CI and EWP are known. 
Unfortunately, as noted by Gorney et al. (2024), such data are typically difficult—if not impos-
sible—to obtain. Therefore, it might be sufficient to apply the method to a dataset for which some 
information is known regarding the CI and EWP prior to starting the analysis. 

Second, although the simulation studies were detailed, it is possible to study additional 
simulation conditions, including those that involve the use of different item selection methods, 
different item exposure control methods, content balancing, and different ability estimation 
methods. It is also possible to perform a more detailed analysis of the simulation results. For 
example, although aggregate flagging rates were reported, it would be interesting to study the 
flagging rates of easy vs. difficult items or low- vs. high-ability examinees. It would also be inter-
esting to study the flagging rates of examinees who were administered different numbers of CI. 

Third, it would be useful to compare the performance of the proposed method to that of existing 
methods for detecting CI and EWP simultaneously in CAT. Two examples of such methods are the 
information theory and combinatorial optimization approach of Belov (2014) and the machine 
learning-based approach of Pan et al. (2022). 

Finally, even though different settings were compared in each of the three steps, it is possible 
to use other settings or statistics. For example, recent researchers have shown that the use of item 
distractors (Gorney et al., 2023) and item response times (Choe et al., 2018; Sinharay & Johnson, 
2020; van der Linden & Belov, 2023) can lead to improved detection results for both CI and EWP. 
It seems reasonable to believe that these additional sources of information would lead to improved 
detection results in the present context, as well, provided that such information is trustworthy and 
available. 
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