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Adaptive measurement of change (AMC) is a psychometric procedure to detect intra-

individual change in trait levels across multiple testing occasions. However, in studying 

how AMC performs as a function of change, most previous studies did not specify change 

patterns systematically. Inspired by Cronbach and Gleser (1953), a quantitative framework 

was proposed that systematically decomposes a change pattern into three components: 

magnitude, scatter, and shape. Shape was further decomposed into direction and order. 

Using monte-carlo simulations, a series of analyses of variance were performed to investi-

gate how each of these components affected the false positive rates (FPRs) and true positive 

rates (TPRs) for detecting true change, and a change recovery index (CRI). Results showed 

that FPRs were between 0.05 and 0.075 under all conditions. For TPRs, magnitude had the 

largest effect among all design factors. With an ideal item bank, TPRs reached 0.8 when 

magnitude was 1.0. Scatter and shape had some effects when the directions of change were 

mixed (non-monotone) across testing occasions. In addition, Time 1 true 𝜃 value (𝜃1) and 

its interactions had some effects under a practical item bank that had low test information 

at extreme 𝜃 values. CRIs were generally under 0.1 except at extreme 𝜃1 values, indicating 

good change recovery. The results showed that when the magnitude of change is large, 

AMC has sufficient power to detect and recover individual change, regardless of the scatter 

and the shape of that change. When the magnitude of change is small, significance testing 

results should be interpreted cautiously due to the lack of power. 

Keywords: adaptive measurement of change, trait change patterns, computerized 

adaptive testing, longitudinal measurement 

How Do Trait Change Patterns Affect the 

Performance of Adaptive Measurement of Change? 

Ming Him Tai, Allison W. Cooperman,  

Joseph N. DeWeese, and David J. Weiss 

University of Minnesota 



Journal of Computerized Adaptive Testing 

How Do Trait Change Patterns Affect the Performance of Adaptive Measurement of Change? 

Ming Him Tai, Allison W. Cooperman, Joseph N. DeWeese, and David J. Weiss 

 

33| JCAT Vol. 10 No. 3    July 2023 

Change of an individual’s trait level over time is known as intra-individual change. Measuring 

intra-individual change is important in psychological and educational assessments. For example, 

in hospital and clinical settings, clinicians are interested in whether a therapeutic intervention 

results in an improvement in psychological symptoms. Similarly, in school and training settings, 

instructors want to evaluate whether an instructional strategy results in an improvement in 

measured outcomes. These questions can only be answered by repeatedly measuring the same 

individual before and after the intervention and comparing the scores in a psychometrically sound 

manner. 

Straightforward as it appears to be, measurement of individual change and testing its signifi-

cance are challenging. Traditional approaches based on classical test theory (CTT) have been 

considered psychometrically flawed for more than 50 years (Cronbach & Furby, 1970). For 

instance, simply taking the difference between the pre- and post-intervention scores results in low 

reliability (Embretson, 1995; Hummel-Rossi & Weinberg, 1975; Lord, 1963; Willett, 1994, 1997), 

negative correlation with the initial status (Cronbach & Furby, 1970; Embretson, 1995; Willett, 

1994, 1997), regression to the mean (Cronbach & Furby, 1970; Hummel-Rossi & Weinberg, 

1975), and dependence on potentially different scales (Embretson, 1995; Hummel-Rossi & 

Weinberg, 1975). The reliable change index (RCI), used extensively in clinical applications (e.g., 

Jacobson et al., 1984; Jacobson & Truax, 1991; Marx et al., 2022), is defined as the ratio between 

a person’s observed change score and the standard error of measurement (SEM) of their difference 

score. But the RCI has major drawbacks beyond those discussed above, including the use of a 

uniform SEM across all individuals under the CTT framework (e.g., Brouwer et al., 2013; 

Gulliksen, 1950; Lord & Novick, 1968) and arbitrariness in selecting the appropriate reliability 

index to compute the SEM (Wang et al., 2021). The RCI is also limited to using simple difference 

scores based on two testing occasions. 

Most modern statistical procedures that model change, such as latent growth curve models 

(Bryk & Raudenbush, 1987; Grimm et al., 2017; Meredith & Tisak, 1990) and structural equation 

models (Bollen & Curran, 2006; Grimm et al., 2017), analyze change at the group level. When 

individual change is addressed, it is always considered in relation to group change. Group-level 

analysis is appropriate for evaluating whether an intervention is effective for a group, but inappro-

priate for evaluating whether change has occurred at the individual level (Wang & Weiss, 2018).  

Adaptive measurement of change (AMC) represents a modern, psychometrically rigorous 

approach to measuring and testing the psychometric significance of individual change. In this 

context, an individual change having psychometric significance means that a null hypothesis 

significance testing procedure, based entirely on the individual’s trait estimates and related data, 

determines that the trait level of the individual has changed over two or more testing occasions. 

First proposed by Weiss and Kingsbury (1984) under the name of “adaptive self-referenced 

testing,” AMC integrates item response theory (IRT) and computerized adaptive testing (CAT) 

into a coherent psychometric procedure. In its initial conceptualization, two sets of CATs are 

administered at pre- and post-intervention occasions to estimate an examinee’s trait (𝜃) values 

along with their SEMs, which in IRT will vary with θ levels. Then the confidence intervals of 𝜃 at 

the two occasions are constructed from the SEMs and compared. If the intervals do not overlap, 

psychometrically significant individual change is said to have occurred. 

In recent years, several studies have extended the pioneering work of Weiss and Kingsbury 

(1984). For example, Kim-Kang and Weiss (2008) compared the performance of AMC with three 

conventional testing methods for measuring individual change across two occasions. They conclu-

ded that AMC outperformed all three CTT methods in the examined conditions. Not only did AMC 
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measure individual change equally well across the entire range of 𝜃, it also dramatically reduced 

the number of items necessary to administer to detect significant change. Finkelman et al. (2010) 

enriched the AMC framework by investigating the performance of a new item selection procedure, 

namely Kullback–Leibler information (Cover & Thomas, 1991), and two new hypothesis testing 

methods—a Z-test and a likelihood-ratio chi-square test. They found improvements in the proce-

dure by showing better adherence to Type I error rates and better power for detecting small 

changes. Lee (2015) further investigated three additional hypothesis testing methods and one new 

item selection method, concluding that the Z statistic displayed a better balance between Type I 

error rates and power compared to the other statistics. 

Phadke (2017) examined the performance of AMC across more than two occasions. She 

developed and compared several generalized methods for hypothesis testing and concluded that 

the likelihood-ratio test achieved the optimum balance between Type I error and power. Wang and 

Weiss (2018) then extended the AMC framework to study multidimensional latent traits using 

multidimensional IRT under two testing occasions. Wang et al. (2021) further developed and 

investigated the performance of AMC methods for multidimensional latent traits measured across 

multiple occasions, which is the most comprehensive AMC framework. Cooperman et al. (2021) 

showed that AMC is generally robust to item parameter estimation error. 

A significant limitation of the previous studies is that the effects of trait change patterns on 

AMC performance were not systematically investigated. The change pattern of an individual refers 

to the numerical characteristics of the changes over multiple testing occasions, including their 

magnitudes and directions (increase or decrease). Because most of the previous studies focused on 

hypothesis testing methods and the magnitude of change as the primary design factors, they did 

not design the change patterns systematically. Their common practice was to specify a limited 

number of change patterns that represented different arbitrary combinations of magnitude, direc-

tion, and linear or nonlinear patterns of change. However, Cooperman et al. (2021) showed that 

among design factors including hypothesis testing method, item parameter estimation error, 

starting 𝜃 value, and change pattern, the effect sizes of change pattern on most AMC performance 

indicators were far greater than other design factors. For example, in their results, the classical 

effect sizes (2) for true positive rates (TPRs, or power) were 0.793 for change pattern, 0.06 for 

starting 𝜃, and 0.049 for the change pattern × starting 𝜃 interaction. As a comparison, hypothesis 

testing method had an effect size of only 0.021.  

In reality, change patterns vary dramatically across individuals. As two illustrations, Figure 1 

depicts the change patterns of the Applied Cognition scale scores from the patient-reported out-

comes of nine hospitalized patients on four measurement occasions (Wang et al., 2022; Weiss et 

al., 2021); Figure 2 depicts the change patterns of the math ability of nine students on three testing 

occasions in a K–12 setting (Phadke, 2017). These patterns vary in terms of their total change 

magnitude, the dispersion of change across occasions, and the directions of change. These factors 

can have substantial impact on the performance of AMC. For example, Finkelman et al. (2010) 

showed that in the case of two testing occasions, TPRs could be as low as around 0.4 when the 

magnitude of change was 0.5 and as high as nearly 1.0 when the magnitude of change was 1.5. 

Cooperman et al. (2021) showed that in the case of four testing occasions, change patterns [+0.25, 

+0.25, +0.25], [+0.5, +0.25, 0], and [+0.75, 0, 0] resulted in TPRs of around 0.55, 0.60, and 0.65, 

respectively; in other words, patterns with the same total magnitude of change but different 

distributive patterns resulted in different TPRs. It is, therefore, important to investigate how each 

factor, as well as its interactions, impacts the ability of AMC to detect and recover change. 
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Figure 1. Applied Cognition θ Estimates and 2 SEM Bands 

 for Nine Hospitalized Patients at Four Test Occasions 

 
Note. The header of each panel is an arbitrary patient ID.  

 

Figure 2. Mathematics Ability θ Estimates of Nine Students at Three Test Occasions 
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Purpose 

The purpose of this study was to systematically specify the change patterns of latent traits and 

to investigate their effects on the performance of AMC. Specifically, change patterns were based 

on a framework proposed by Cronbach and Gleser (1953) that decomposes a profile pattern into 

three components: magnitude, scatter, and shape. The primary research question motivating this 

research was how each pattern component and their interactions affected the performance of AMC 

in terms of detecting change, if any, and estimating the magnitude and direction of the change. A 

monte-carlo simulation study was designed to examine how TPRs, false positive rates (FPRs; i.e., 

Type 1 error rates), and a change recovery index (CRI) were affected by three design factors: (1) 

trait change pattern; (2) starting 𝜃 value (𝜃1); and (3) item bank characteristics, which are further 

described below.  

Method 

Design Factors 

Change Patterns 

Based on the approach developed by Cronbach and Gleser (1953), change patterns were 

characterized by three independent components: (1) magnitude, (2) scatter, and (3) shape. The 

shape component was further decomposed into two subcomponents, named direction and order. 

Change was simulated to have occurred across four testing occasions on a single variable. 

Magnitude 

Magnitude describes the total amount of change in 𝜽 across all testing occasions. It can be 

defined as 

 
𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = ∑|∆𝜃𝑖|,

𝑛

𝑖=2

 (1) 

where ∆𝜃𝑖 = 𝜃𝑖 − 𝜃𝑖−1  (i.e., the change in 𝜃  from occasion 𝑖 − 1 to 𝑖) and 𝑛 is the number of 

testing occasions. Note that the summation is over the absolute value of ∆𝜃𝑖 . As a numerical 

example, consider two patterns—Pattern A and Pattern B—as displayed in Figure 3.  

Figure 3 displays the patterns in two formats: in 𝜃 units (Figure 3a) and in ∆𝜃 units (Figure 

3b) (all subsequent figures in this section are presented in the same manner). Figure 3b shows that 

for Pattern A, ∆𝜃2 = ∆𝜃3 = ∆𝜃4 = 0.2 , so magnitude𝐴 = |∆𝜃1| + |∆𝜃2| + |∆𝜃3| = 0.6 . For 

Pattern B, ∆𝜃2 = ∆𝜃3 = ∆𝜃4 = 0.1, so magnitude𝐵 = |∆𝜃1| + |∆𝜃2| + |∆𝜃3| = 0.3. Therefore, 

Pattern A has larger magnitude than Pattern B.  

Scatter 

Scatter describes the dispersion of change in 𝜽 (∆𝜽) across all testing occasions. It can be 

defined as 
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𝑆𝑐𝑎𝑡𝑡𝑒𝑟 = √∑(|∆𝜃𝑖| − |∆𝜃|̅̅ ̅̅ ̅̅ )
2

,

𝑛

𝑖=2

 (2) 

where |∆𝜃|̅̅ ̅̅ ̅̅  is the average of |∆𝜃| across all testing occasions. For the two patterns displayed in 

Figure 3, both have zero scatter because their ∆𝜃s remain the same across occasions. Figure 4 

displays two alternative patterns with different amounts of scatter.  

Figure 3. Magnitude: Comparison of Pattern A and Pattern B 

 

Figure 4. Scatter: Comparison of Pattern C and Pattern D 

 

Figure 4b shows that for Pattern C, ∆𝜃2 = ∆𝜃3 = ∆𝜃4 = 0.2, so |∆𝜃|̅̅ ̅̅ ̅̅
𝑐 = 0.2 and 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝐶  =

0 by Equation 2. For Pattern D, ∆𝜃2 = 0.1, ∆𝜃3 = 0.4, ∆𝜃4 = 0.1, so 

 
|∆𝜃|̅̅ ̅̅ ̅̅

𝐷 =
(|∆𝜃2| + |∆𝜃3| + |∆𝜃4|)

3
=

0.1 + 0.4 + 0.1

3
= 0.2, (3) 

and, 
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𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝐷  = √∑(|∆𝜃𝑖| − |∆𝜃|̅̅ ̅̅ ̅̅ )
2

𝑛

𝑖=2

= √(0.1 − 0.2)2 + (0.4 − 0.2)2 + (0.1 − 0.2)2 = 0.25. (4) 

Therefore, Pattern D has larger scatter than Pattern C, even though they have the same magnitude 

of change (0.6). 

Shape 

Following the definition in Cronbach and Gleser (1953), shape contains the information about 

a pattern after accounting for its magnitude and scatter. In this study, shape information was further 

decomposed into direction and order. First, direction describes whether ∆𝜽 > 𝟎 or ∆𝜽 < 𝟎 (i.e., 

whether 𝜽 is increasing or decreasing at a particular occasion). Consider the three patterns in 

Figure 5. 

Figure 5. Direction: Comparison of Pattern E, Pattern F, and Pattern G 

(a) In 𝜃 units   

   

(b) In ∆𝜃 units 

   

Figure 5b shows that for all three patterns, |∆𝜃2| = |∆𝜃3| = |∆𝜃4| = |∆𝜃|̅̅ ̅̅ ̅̅ = 0.2. Therefore, 

they have the same amount of magnitude (0.6) and scatter (0). However, their directions of change 

are different across occasions. Using + and  to represent increase and decrease in 𝜃, the three 

patterns can be represented as (+, +, +), (,,), and (+,, +), respectively. 

Second, order describes the combinatorial order of ∆𝜃s. Consider the three patterns in Figure 6. 
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As Figure 6b shows, for all three patterns, the three ∆𝜃s at Occasions 2 to 4 are 0.1, 0.1, and 0.4. 

However, their combinatorial orders are [0.4, 0.1, 0.1], [0.1, 0.4, 0.1], and [0.1, 0.1, 0.4], 

respectively, where the brackets represent ordered combinations of elements. Otherwise, all three 

patterns have the same magnitude (0.6), scatter (0.25), and direction (+, +, +). Taken together, 

magnitude, scatter, and shape (including direction and order) describe the key information about a 

pattern in four independent components. 

Figure 6. Order: Comparison of Pattern H, Pattern I, and Pattern J 

(a) In 𝜃 units 

   

(b) In ∆𝜃 units 

   

Simulation Design 
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data from hospitalized patients who were tested on from three to five testing occasions (Weiss et 

al., 2021), as illustrated in Figures 1 and 2. 
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0.3m, 0.3m]. These patterns corresponded to three scatter values: 0.43m, 0.29m, and 0.14m, 

respectively, which were reasonably spread out to allow its effects to be investigated. Note that all 

three patterns were in the form of [a, b, b], meaning that two of the three values were the same 

(denoted as b), whereas the third was different (denoted as a). Adding variations on order, three 

change patterns were possible: [a, b, b], [b, a, b], and [b, b, a]. Such a design reduced the number 

of simulations needed. For example, for the change pattern [a, b, b] there are only three possible 

orders: [a, b, b], [b, a, b], and [b, b, a], whereas for the change pattern [a, b, c] there are six possible 

orders. However, the reduction in the number of simulations did not impede investigating the 

impact of scatter on the performance of AMC.  

There were two cases for direction: unidirectional changes and mixed-directional changes. In 

the case of unidirectional changes, all ∆𝜃s were either positive or negative, meaning that the 

change pattern was either monotone increasing (+, +, +) or monotone decreasing (, , ). Adding 

variations in order, there were three possible change patterns for the monotone increasing case: 

[+a, +b, +b], [+b, +a, +b], and [+b, +b, +a], and three for the monotone decreasing case: [a, b, 

b], [b, a, b], and [b, b, a]. 

In the case of mixed-directional changes, not all ∆𝜃s were positive or negative (i.e., the change 

pattern was mixed). In this case, for each of the three order conditions, there were six possible 

patterns. For example, for order condition (b, a, b), the six possible patterns were: [+b, +a, b], 

[+b, a, +b], [+b, a, b], [b, +a, b], [b, a, +b], and [b, +a, +b]. 

Two patterns are presented as examples in Figure 7. Pattern K is a unidirectional change case:  

Figure 7. Examples: Patterns K and L 
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𝜽 = [0.0, 0.1, 0.9, 1.0], ∆𝜽 = [0.1, 0.8, 0.1], magnitude m = 1.0, scatter = 0.43 (= 0.43m = 0.43 × 

1.0 = 0.43), directions of change = [+, +, +], order = [b, a, b]. Pattern L is a mixed-directional 

change case, 𝜽 = [0.0, 0.3, 0.2, 0.3], ∆𝜽 = [0.3, −0.1, 0.1], magnitude m = 0.5, 0.29m = 0.29 ×
 0.5 = 0.145), directions of change = [+,, +], order = [b, a, b], scatter = 0.145. 

To summarize, Table 1 presents the number of change patterns across the design factors. There 

were 54 patterns in the case of unidirectional changes (54 = 3 × 3 × 2 × 3) and 162 patterns in 

the case of mixed-directional changes (162 = 3 × 3 × 6 × 3). In addition, a no-change pattern 

(i.e., ∆𝜃2 = ∆𝜃3 = ∆𝜃4 = 0) was also examined to evaluate the FPRs, which should be around the 

prespecified 𝛼 level (0.05). Altogether, the total number of change patterns examined was 217. 

Table 1. Number of 𝜽 Patterns in the Simulation Plan 

   Shape  

Type of change Magnitude Scatter Direction Order Total 

Unidirectional changes 3 3 2 3   54 

Mixed-directional 

changes 3 3 6 3 

 

162 

No change      1 

Grand total     217 

𝜽𝟏 Values and Item Banks 

Cooperman et al. (2021) showed that Time 1 true 𝜃 value (𝜃1) and its interaction with change 

pattern had moderate effects on TPRs. They also found that item bank information played a 

substantial role in AMC performance, resulting in lower TPRs and more biased change recovery 

at extreme 𝜃1 values where bank information was low (also see Finkelman et al., 2010). Therefore, 

both 𝜃1  and item bank design were included as design factors. Following previous studies 

(Finkelman et al., 2010; Lee, 2015; Phadke, 2017), five discrete 𝜃1 values were chosen: 𝜃1= {2, 

1, 0, 1, 2}.  

Two item banks were generated with 300 dichotomous items from the unidimensional three-

parameter logistic (3PL) model (Birnbaum, 1986) with D = 1.7. The two banks shared the same 

set of discrimination parameters and pseudo-guessing parameters, but differed in their difficulty 

parameters. Specifically, the discrimination parameters were generated from a truncated normal 

distribution, N(1.25, 0.25), with bounds set at 0.50 and 2.0. A truncated normal distribution 

provides a good approximation of the discrimination parameters in a typical CAT item bank, where 

items with extreme discrimination parameters are often removed (Crichton, 1981). The pseudo-

guessing parameters were fixed at 0.2 for all items (Lord & Novick, 1968). The difficulty 

parameters for the first item bank were generated from a uniform distribution, U[4, 4], whereas 

those for the second item bank were generated from a normal distribution, N(0, 1.2) (Phadke, 

2017). The first item bank therefore represents an item bank with equal measurement precision 

across the entire 𝜃 continuum, which is an ideal item bank for CAT (Kim-Kang & Weiss, 2008) 

because it has the potential to provide equiprecise measurement across 𝜃. The second item bank 

represents a practical item bank with higher information around the center of the 𝜃 continuum and 

lower information at the two extremes, which resembles the shape of most real CAT item banks. 

These two banks were similar to those used in Finkelman et al. (2010). The bank information 

functions of the two banks are shown in Figure 8. 
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Figure 8. Item Bank Information Functions 

 

CAT Administration  

The AMC procedure aims to detect changes in estimated θ (𝜃) across the four testing occasions. 

Therefore, four CAT administrations were implemented, corresponding to the four occasions. The 

CAT starting value for Occasion 1 was 0.0 for all simulees. At Occasions 2, 3, and 4 (𝑇2, 𝑇3, and 

𝑇4), the CAT starting values were the final (𝜃) from the previous occasion. For example, the CAT 

starting value at 𝑇3 was 𝜃2, which was the final 𝜃 from 𝑇2. Each simulation condition was replica-

ted 1,000 times to represent 1,000 simulees for each combination of pattern, 𝜃1 value, and CAT 

item bank. In addition, true (error-free) item parameters were used in the simulations because 

Cooperman et al. (2021) showed that item parameter estimation error had a small to negligible 

effect on AMC performance in similar testing scenarios. 

All four testing occasions used fixed-length tests. To identify the optimal test length, a 

preliminary simulation study was conducted. The study results showed that given the two item 

banks described above, 𝜃 stabilized after 25 items under all true 𝜃 conditions. Therefore, all four 

CAT administrations were administered as 25-item fixed-length tests. Throughout the AMC 

process, 𝜃 was estimated with maximum likelihood estimation (MLE). In case of the absence of a 

mixed-response vector, maximum a posteriori (MAP) was used with a standard normal prior 

distribution until a mixed-response pattern was obtained. Items were chosen to maximize the 

expected Fisher information conditional on the current 𝜃 (Embretson & Reise, 2000).  

Hypothesis Testing Method 

Three hypothesis testing methods have been investigated in previous AMC research: Z-test, 

likelihood ratio test (LRT), and score ratio test. All three tests demonstrated desirable statistical 

properties in AMC (Finkelman et al., 2010; Lee, 2015; Phadke, 2017; Wang et al., 2021), except 

that the Z-test tended to perform worse than the other two at extreme 𝜃1 values (Cooperman et al., 

2021). Therefore, the LRT was chosen for this study. Under the AMC context, the LRT statistic is 

the ratio of the likelihood of observing the response patterns under the null hypothesis (𝐻0: 𝜃1 =
𝜃2 = ⋯ = 𝜃𝑡 ) over the likelihood of observing the response patterns under the alternative 

hypothesis (𝐻𝑎: at least one of the equal signs does not hold), the latter being the product of the 

separate likelihoods evaluated at the corresponding 𝜃 estimate (Finkelman et al., 2010; Phadke, 

2017). Formally, the LRT test statistic is defined as 
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Λ𝑂 =

𝐿(𝒖1+2+⋯+𝑡|𝜃Pool𝑡
)

𝐿(𝒖1|𝜃1) × 𝐿(𝒖2|𝜃2) × … × 𝐿(𝒖𝑡|𝜃𝑡)
 , (5) 

where 𝜃Pool𝑡
 is the MLE of 𝜃  under 𝐻0 , 𝒖𝑖  is the response vector at testing occasion 

𝑇𝑖 (𝑖 =  1, … , 𝑡), 𝒖1+2+⋯+𝑡 is the combined response vector across 𝑡 testing occasions, and 𝐿(∙) 

is the likelihood value for the 3PL model evaluated at a 𝜃  value. Under the null hypothesis, 

−2 log𝑒 Λ𝑂 follows a chi-square distribution with (𝑡 − 1) degrees of freedom. 

Dependent Variables 

The performance of AMC was evaluated on three dependent variables: (1) TPR, (2) FPR, and 

(3) CRI. In the case of no change over time (i.e., ∆𝜃2 = ∆𝜃3 = ∆𝜃4 = 0), FPRs measured the 

proportion of simulees that were identified by the AMC procedure as having significant change. 

TPRs measured the same proportion in cases where there was indeed change over time. 

CRI was defined as 

  
𝐶𝑅𝐼 = √(∆𝜃2̂ − ∆𝜃2)

2
+ (∆𝜃3̂ − ∆𝜃3)

2
+ (∆𝜃4̂ − ∆𝜃4)

2
, (6) 

where ∆𝜃2̂ = 𝜃2̂ − 𝜃1̂ (i.e., the estimated change in 𝜃 from 𝑇1 to 𝑇2) and ∆𝜃2 = 𝜃2 − 𝜃1 (i.e., the 

true change in 𝜃  from 𝑇1  to 𝑇2 ). Other terms were defined similarly. CRI measures the 

performance of AMC in terms of how accurately it recovered true change. 

A series of three-way analyses of variance (ANOVAs) examined the effects of the five design 

factors, including four factors in change patterns (magnitude, scatter, direction, and order) and 𝜃1 

values, on each dependent variable. All factors were fully crossed. The classical effect sizes were 

computed as 

 
𝜂2 =

SSFactor

SSTotal
,  (7) 

where SS denotes the sum-of-squares from each factor in the ANOVA. A separate ANOVA was 

run for each of the dependent variables.  

Software 

All simulations were conducted using R statistical software. The catIrt library (Nydick, 2014) 

was used to estimate 𝜃 and the ggplot2 library (Wickham, 2016) was used to create plots. All other 

analyses were completed using functions written by the authors and adapted from Cooperman et 

al. (2021). The code is available upon request from the first author. 

Results 

FPR results are shown for two conditions: the practical item bank and the ideal item bank. TPR 

and CRI results are shown for four scenarios: unidirectional changes with a practical item bank 

(UDP), unidirectional changes with an ideal item bank (UDI), mixed-directional changes with a 

practical item bank (MDP), and mixed-directional changes with an ideal item bank (MDI). 
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FPRs 

Under each combination of item bank and 𝜃1 conditions, the AMC procedure was replicated 

1,000 times, and FPRs were calculated as the proportion of positive cases (i.e., cases when the null 

hypothesis was rejected by the LRT). Figure 9 shows that regardless of item bank and 𝜃1 value, 

FPRs hovered around 0.06, near the prespecified Type I error rate under the null hypothesis. No 

pattern was identified. The largest FPR was 0.067 at 𝜃1 = −1 for the practical item bank. The 

simulations were repeated several times and similar results were observed. These results provided 

evidence that the AMC framework was performing as expected. 

Figure 9. FPRs as a Function of Item Bank and 𝜽𝟏 

 

TPRs 

Table 2 presents the three-way ANOVA results for TPRs, and Figure 10 shows how TPRs 

varied with magnitude, scatter, order, and 𝜃1. Similar to FPRs, the AMC procedure was replicated 

1,000 times under each combination of magnitude, scatter, order, and 𝜃1 conditions, and TPRs 

were calculated as the proportion of positive cases. In the UDI condition (shown in the first column 

in Table 2 and in Figure 10a), magnitude had an effect size of 0.981. No other factors had an effect 

size of 0.01 (i.e., a small effect size; Cohen, 1988) or larger. Figure 10a shows that TPRs increased 

as magnitude increased (from left to right). Note that when magnitude was 1.0, TPRs were 

approximately 0.8 across the 𝜃1  continuum. TPRs were as low as between 0.25 and 0.3 for 

magnitude of 0.5 and nearly 1.0 for magnitude of 1.5. Direction of change had no effect, nor did 

scatter. Because order had negligible effect size, only order type (a,b,b) is shown in Figure 10. 

In the UDP condition (the second column in Table 2 and Figure 10b), the effect size of 

magnitude decreased to 2 = 0.909. In this condition, 𝜃1 had an effect size of 0.039 and the 𝜃1 × 

direction interaction was 0.023. The main effect of 𝜃1 on TPRs can be observed from Figure 10b, 

where TPRs tended to be lower at the two extremes of 𝜃1 (ranging from 0.55 to 0.75) and higher 

in the middle (around 0.87). The 𝜃1 × direction interaction effect was evidenced by the positive 

and the negative direction line segments crossing each other, with the effect most pronounced 

when change magnitude was 1.0 and least evident with change magnitude of 0.5. When change 

magnitude was 1.0, TPRs of positive and negative direction at 𝜃1 = −2 were 0.75 and 0.55, 

respectively; at 𝜃1 = 2, they were 0.62 and 0.76, respectively. In the case of MDI (third column 
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Table 2. Classical Effect Sizes (2) From a Three-Way ANOVA on TPR  

for Each of the Four Change Scenarios 

Factor UDI UDP MDI MDP 

Main effects 

   𝜃1                  0.003 0.039* 0.005 0.043* 

   magnitude 0.981*** 0.909*** 0.742*** 0.700*** 

   scatter                     0.003 0.004 0.142*** 0.129** 

   direction                   0.000 0.000 0.020* 0.020* 

   order                       0.004 0.004 0.006 0.005 

Two-way interactions     

   𝜃1 × magnitude            0.001 0.006 0.001 0.007 

   𝜃1 × scatter              0.000 0.000 0.000 0.000 

   𝜃1 × direction            0.001 0.023* 0.000 0.005 

   𝜃1 × order                0.000 0.000 0.000 0.000 

   magnitude × scatter           0.001 0.001 0.028* 0.023* 

   magnitude × direction         0.000 0.000 0.005 0.004 

   magnitude × order             0.001 0.001 0.001 0.001 

   scatter × direction           0.000 0.000 0.008 0.008 

   scatter × order               0.001 0.001 0.002 0.002 

   direction × order             0.000 0.000 0.021* 0.020* 

Three-way interactions     

   𝜃1 × magnitude × scatter    0.000 0.000 0.001 0.003 

   𝜃1 × magnitude × direction  0.001 0.007 0.000 0.002 

   𝜃1 × magnitude × order      0.000 0.000 0.000 0.000 

   𝜃1 × scatter × direction    0.000 0.000 0.000 0.001 

   𝜃1 × scatter × order        0.000 0.000 0.000 0.000 

   𝜃1 × direction × order      0.000 0.000 0.000 0.005 

   magnitude × scatter × direction 0.000 0.000 0.005 0.005 

   magnitude × scatter × order     0.000 0.000 0.001 0.001 

   magnitude × direction × order   0.000 0.000 0.004 0.003 

   scatter × direction × order     0.000 0.000 0.004 0.003 

Residuals                   0.001 0.001 0.004 0.009 

* Indicates a small effect size (≥ 0.01). ** Indicates a medium effect size (≥ 0.06). *** Indicates a large 

effect size (≥ 0.14). These effect size thresholds are from Cohen (1988). 
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Figure 10. TPRs as a Function of Magnitude, Direction, 𝜽𝟏, and Scatter  

for Unidimensional and Multidirectional Change (Order Type a, b, b) 
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in Table 2 and Figure 10c), the effect size of magnitude was 2 = 0.742, still the largest among all 

factors. However, TPRs at any magnitude level varied noticeably with scatter. Compared to the 

UDI condition where scatter had negligible effect sizes, scatter in the MDI condition had an effect 

size of 0.142. This effect can be observed from Figure 10c. As scatter decreased (rows from top to 

bottom), TPRs decreased for all magnitudes of change. For instance, when magnitude was 1.0, 

TPRs were mostly in the range of 0.5 and 0.8 with large scatter, in the range of 0.3 and 0.6 with 

medium scatter, and in the range of 0.25 and 0.5 with small scatter.  

In addition to magnitude and scatter, three other factors, namely direction, magnitude × scatter 

interaction, and direction × order interaction, each had an effect size of between 0.02 and 0.03. 

The effect of direction can be seen in Figure 10c, which shows that the direction patterns 

represented by the orange (+, +, ) and pink (,, +) line segments have higher TPRs than other 

direction patterns at all magnitude and scatter levels. The difference in TPRs due to different 

direction patterns could be as large as 0.3 under some large magnitude conditions. To see the 

magnitude × scatter interaction effect, note that although TPRs decreased as scatter decreased, the 

magnitude of TPR decrease increased as magnitude increased.  

The direction × order interaction effect can be observed in Figure 11, which displays TPRs 

separately for three order conditions. Results in Figure 11a (order pattern a, b, b) are similar to 

those in Figure 10c, in which orange (+, +,  and pink (, , +) line segments have the highest 

TPRs. As contrast, in Figure 11b (order pattern b, a, b), the blue (, +, ) and gold (+,, +) patterns 

have consistently lower TPRs than other patterns, whereas in Figure 11c (order pattern b, b, a), the 

light green (, +, +) and dark green patterns (+,,) have almost consistently higher TPRs than 

other patterns. 

In the MDP condition (the fourth column in Table 2 and Figure 10d), the effect sizes of factors 

were quite similar to those in the ideal item bank case, with the notable exception of 𝜃1. With the 

ideal item bank, 𝜃1 had negligible effect size; with the practical item bank, as expected, 𝜃1 had an 

effect size of 0.043. Such an effect can be observed from Figure 10d, where TPRs tended to be 

higher in the middle range of 𝜃1 and lower at the two extremes. The difference could be as large 

as 0.4 under some large magnitude conditions. 

To summarize the TPR results, two salient patterns were observed: First, the effect sizes of 𝜃1 

were smaller under the ideal item bank (UDI and MDI) than under the practical item bank (UDP 

and MDP). This was due to the fact that the test information of the practical item bank was higher 

in the middle of the 𝜃 continuum and lower at the two extremes, resulting in a reduction in TPRs 

as 𝜃1 deviated from 0. As a comparison, the test information of the ideal item bank was roughly 

equal throughout the entire 𝜃 continuum, resulting in TPRs that were basically equal across the 𝜃1 

range. 

Second, the effect sizes of the magnitude main effect were smaller under mixed-directional 

conditions (MDP and MDI) than under unidirectional conditions (UDP and UDI), and those of the 

scatter main effect were larger under mixed-directional conditions than under unidirectional con-

ditions. The reason is hypothesized to be because with mixed-directional changes, the combi-

nation of scatter, direction, and order control the allocation of total magnitude across different 

occasions, resulting in positive changes and negative changes canceling each other. As a result, 

magnitude showed smaller effect sizes. To substantiate this hypothesis, magnitude was replaced 

by net magnitude and the data were reanalyzed. Net magnitude was defined as the absolute value 

of the difference in 𝜃 between the last occasion and the first occasion, that is, 
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Figure 11. TPRs Under MDI Conditions, By Order 
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 𝑁𝑒𝑡 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = |𝜃4 − 𝜃1|.  (8) 

The difference between magnitude (as originally defined) and net magnitude, with Patterns E, 

F, and G, are illustrated in Figure 5. As discussed previously, all three patterns have the same 

magnitude, which is 0.6. However, for Patterns E and F, their net magnitude is also 0.6 (Pattern E: 

|0.6 − 0| = 0.6; Pattern F: |0 − 0.6| = 0.6), whereas that of Pattern G is only 0.2 (|0.2 − 0| =
0.2). The net magnitude of Pattern G is smaller because its changes are mixed-directional (+0.2,   

0.2, +0.2), resulting in the positive changes and the negative change cancelling each other. In 

other words, net magnitude partially absorbs the allocative effect described above. If the allocative 

effect was important, the effect sizes of magnitude should increase and those of non-magnitude 

factors should decrease. 

The data were analyzed by ANOVA using net magnitude. The results are displayed in Table 

3. Noticeably, the effect size of scatter sharply decreased to 0.01 from 0.142 and 0.129 for the 

ideal bank and the practical bank, respectively. On the other hand, the magnitude main effect 

exhibited some noticeable increases. These results provided some support for the hypothesis 

concerning the allocative effect under mixed-directional change conditions. 

CRIs 

Table 4 presents the three-way ANOVA results for CRIs, and Figure 12 shows how CRIs 

varied with magnitude, scatter, and 𝜃1. Note that for CRI, a small value reflects better recovery of 

change than a large value. With the ideal item bank (the first and the third columns in Table 4), 

the factor with the largest effect size was the residuals, with 2 = 0.450 in the case of unidirectional 

changes and 0.533 in the case of mixed-directional changes. Other than the residuals, factors with 

a medium effect size or above were all three-way interactions. Observing Figure 12a and 12c, no 

clear patterns are discernible. 

With the practical item bank (the second and the fourth columns in Table 4), magnitude, 

magnitude × 𝜃1, and magnitude × 𝜃1 × direction all had effect sizes that were close to or above 

medium size (0.06). In addition, 𝜃1 and 𝜃1× direction had effect sizes between medium and large 

(0.14). Figure 12b and 12d show that at extreme 𝜃1 values, CRIs were higher under some high-

magnitude conditions at the extremes of 𝜃1.  

Regarding the magnitude of CRI, with the ideal item bank, CRIs under all conditions were less 

than 0.1. Because there appears to be no previous literature that defined CRI in the same way as it 

was used here, there was no standard against which to compare the results. However, based on 

how CRI was defined, 0.1 appears to be a small magnitude given the range of 𝜃 considered, mean-

ing that change recovery was satisfactory. With the practical item bank, CRIs under most con-

ditions were also less than 0.1, indicating good recovery. The only exceptions were when 𝜃1 took 

on extreme values. This was expected because the test information at extreme 𝜃 values under the 

practical item bank was relatively low, resulting in less accurate estimated 𝜃 and change in 𝜃. 
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Table 3. 2 From a Three-Way ANOVA on TPRs for  

Mixed-Directional Change Conditions Under MDI and MDP Conditions,  

Based on Net Magnitude and Total Mmagnitude 

 MDI MDP 

Factor 

Net 

magnitude 

Total 

magnitude 

Net 

magnitude 

Total 

magnitude 

Main effects     

   𝜃1                      0.005 0.005 0.043* 0.043* 

   magnitude                   0.815*** 0.742*** 0.755*** 0.700*** 

   scatter                     0.010* 0.142*** 0.010* 0.129** 

   direction                   0.020* 0.020* 0.019* 0.020* 

   order                       0.006 0.006 0.006 0.005 

Two-way interactions     

   𝜃1 × magnitude            0.001 0.001 0.006 0.007 

   𝜃1 × scatter              0.000 0.000 0.000 0.000 

   𝜃1 × direction            0.000 0.000 0.005 0.005 

   𝜃1 × order                0.000 0.000 0.000 0.000 

   magnitude × scatter           0.041* 0.028* 0.039* 0.023* 

   magnitude × direction         0.004 0.005 0.004 0.004 

   magnitude × order             0.005 0.001 0.005 0.001 

   scatter × direction           0.010* 0.008 0.009 0.008 

   scatter × order               0.002 0.002 0.001 0.002 

   direction × order             0.059* 0.021* 0.061** 0.020* 

Three-way interactions     

   𝜃1 × magnitude × scatter    0.000 0.001 0.002 0.003 

   𝜃1 × magnitude × direction  0.001 0.000 0.005 0.002 

   𝜃1 × magnitude × order      0.000 0.000 0.000 0.000 

   𝜃1 × scatter × direction    0.000 0.000 0.003 0.001 

   𝜃1 × scatter × order        0.000 0.000 0.000 0.000 

   𝜃1 × direction × order      0.000 0.000 0.003 0.005 

   magnitude × scatter × direction 0.002 0.005 0.002 0.005 

   magnitude × scatter × order     0.000 0.001 0.000 0.001 

   magnitude × direction × order   0.018* 0.004 0.016* 0.003 

   scatter × direction × order     0.000 0.004 0.000 0.003 

Residuals                   0.001 0.004 0.003 0.009 

* Indicates a small effect size (≥ 0.01). ** Indicates a medium effect size (≥ 0.06). *** Indicates a large 

effect size (≥ 0.14).  
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Table 4. 2 From a Three-Way ANOVA on CRI for the Four Item Bank Conditions 

Factor UDI UDP MDI MDP 

Main effects     

   𝜃1 0.038 0.172*** 0.038 0.129** 

   magnitude                          0.005 0.084** 0.004 0.051 

   scatter                            0.002 0.001 0.003 0.013 

   direction                          0.001 0.018 0.001 0.009 

   order                              0.007 0.002 0.000 0.004 

Two-way interactions     

   𝜃1 × magnitude 0.054 0.162*** 0.008 0.055 

   𝜃1 × scatter 0.030 0.004 0.017 0.027 

   𝜃1 × direction 0.009 0.225*** 0.031 0.095** 

   𝜃1 × order 0.008 0.007 0.020 0.009 

   magnitude × scatter                  0.004 0.002 0.002 0.008 

   magnitude × direction                0.005 0.017 0.017 0.004 

   magnitude × order                    0.018 0.001 0.009 0.006 

   scatter × direction                  0.004 0.000 0.010 0.012 

   scatter × order                      0.004 0.003 0.008 0.001 

   direction × order                    0.012 0.001 0.020 0.010 

Three-way interactions     

   𝜃1 × magnitude × scatter 0.069** 0.007 0.020 0.021 

   𝜃1 × magnitude × direction 0.057 0.188*** 0.054 0.069** 

   𝜃1 × magnitude × order 0.083** 0.007 0.017 0.005 

   𝜃1 × scatter × direction 0.023 0.006 0.054 0.029 

   𝜃1 × scatter × order 0.047 0.009 0.024 0.010 

   𝜃1 × direction × order 0.024 0.002 0.040 0.082** 

   magnitude × scatter × direction        0.013 0.002 0.017 0.011 

   magnitude × scatter × order            0.014 0.001 0.007 0.004 

   magnitude × direction × order          0.008 0.003 0.015 0.010 

   scatter × direction × order            0.010 0.004 0.028 0.012 

Residuals                          0.450*** 0.071** 0.533*** 0.314*** 

* Indicates a small effect size (≥ 0.01).** Indicates a medium effect size (≥ 0.06). *** Indicates a large 

effect size (≥ 0.14).  
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Figure 12. CRI as a Function of Magnitude, Scatter, Direction, and 𝜽𝟏 
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Discussion and Conclusions 

This study investigated how the magnitude, the scatter, and the shape of a change pattern 

influenced AMC’s performance in terms of detecting and recovering the pattern. FPRs under all 

conditions were between 0.05 and 0.075. Given that the pre-specified Type I error rate under the 

null hypothesis was 0.05, the results provided evidence that the AMC framework was performing 

as expected. There was a slight tendency for the practical bank to have slightly better FPRs than 

the ideal bank, which appears to be contrary to expectations—typically ideal item banks have 

better performance characteristics than actual/practical item banks (e.g., Finkelman et al., 2010; 

Lee, 2015; Phadke, 2017). However, in this case, the range of θ examined was between 2 and 2, 

and as Figure 8 shows, the practical item bank had considerably more information than the ideal 

item bank over the majority of that θ range. The performance of the AMC likelihood ratio test has 

been shown to be highly dependent on item bank information (Finkelman et al., 2010; Lee, 2015; 

Phadke, 2017). 

The magnitude of change had the largest effect on AMC’s ability to detect change among all 

design factors. Under mixed-directional change conditions, it had effect sizes greater than 0.7; 

under unidirectional change conditions, the effect sizes further increased to over 0.9. In order to 

reach TPRs of 0.8, magnitude needed to be 1.0 or higher. When magnitude was 0.5, TPRs were 

mostly between 0.1 and 0.4. When magnitude was 1.5, TPRs were close to 1.0, except for extreme 

𝜃1 conditions. These results were broadly consistent with Finkelman et al. (2010), even though 

their study had only two testing occasions rather than four. The results were also consistent with 

the findings in Cooperman et al. (2021), which showed that with four testing occasions, a change 

magnitude of 0.75 resulted in TPRs of between 0.5 and 0.65. These results suggested that AMC 

might be underpowered when the magnitude of change is small, at least with the item banks studied 

thus far. 

Scatter had almost no effect under unidirectional change conditions, but it had medium to large 

effects under mixed directional change conditions. As mentioned above, this might be due to the 

fact that scatter and shape controlled how total magnitude was allocated across testing occasions. 

Under unidirectional change conditions, TPRs were not affected because the total amount of 

change remained unchanged regardless of how it was distributed across occasions. But under 

mixed-directional change conditions, different combinations of scatter and shape resulted in 

different net total change from the first occasion to the last because positive changes and negative 

changes canceled each other. Indeed, when net magnitude replaced total magnitude in ANOVA, 

the effect size of scatter decreased drastically to 0.01. 

Shape had two subcomponents: direction and order. Under unidirectional change conditions, 

neither had any salient effect. Under mixed-directional change conditions, direction and direction 

× order had small effects. Similar to scatter, these effects might be attributed to their allocative 

effects on magnitude. But unlike scatter, their effect sizes did not decrease when net magnitude 

replaced total magnitude in ANOVA. The effects of shape warrant further investigation in future 

studies. 

𝜃1 had small to medium effects with the practical item bank, but not with the ideal item bank. 

As discussed in the Results section, this could be explained by the different shapes of the item 

bank information functions. In addition, it can be observed from Figure 10b that for the practical 

item bank, at the higher end of 𝜃1 positive change resulted in lower TPRs than negative change, 
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whereas the opposite was true at the lower end of 𝜃1. In other words, there was a direction × 𝜃1 

interaction. This is probably because when 𝜃1 was large (or small), positive (or negative) changes 

resulted in even more extreme 𝜃 values at subsequent occasions where test information was low, 

resulting in low TPRs. 

Regarding CRIs, no clear patterns were identified for conditions with the ideal item bank. For 

conditions with the practical item bank, magnitude, direction, and 𝜃1 demonstrated main effects 

and interaction effects. As discussed previously, such effects were likely due to low test infor-

mation at extreme 𝜃1 values. This can be observed from Figure 12b and 12d, where CRIs were 

higher at extreme 𝜃1 values (reflecting poorer recovery of change) for some high magnitude con-

ditions. For example, as Figure 12b shows, CRIs were significantly higher when 𝜃1 = −2 , 

magnitude was 1.5, and the direction was negative, regardless of the level of scatter. In this case, 

𝜃 values at subsequent testing occasions went further into the negative extreme where test infor-

mation was low, resulting in poor estimation. Similarly, as the upper-right panel of Figure 12d 

shows, CRIs were significantly higher when 𝜃1 = −2, magnitude was 1.5, scatter was large, and 

the direction of change from the first occasion to the second was negative (represented by the deep 

blue, light blue, and pink lines); these three change patterns were [−1.2, +0.15, −0.15], [−1.2, 

+0.15, +0.15], and [−1.2, −0.15, +0.15], respectively. In all three cases, 𝜃2 = −2 − 1.2 = −3.2, 

where test information was low. Interestingly, higher CRIs, indicating poorer recovery of change, 

were mostly observed for negative values of 𝜃1 but not for positive values. This can be explained 

by the fact that the test information of the practical item bank was higher at 𝜃1 = 2 than at 𝜃1 =
−2, as shown in Figure 8, due to the use of the 3PL model. 

Comparing the results of the ideal item bank and the practical item bank, it appears that the 

crux of estimation performance as reflected in the CRI was bank information. The ideal item bank 

had approximately equal information across the 𝜃1 = [−4, 4] continuum, covering all possible 𝜃 

values in this study. Therefore, CRIs under all conditions with the ideal item bank were low, and 

no design factor had a salient effect on CRI. On the other hand, the practical item bank had low 

information at the two extremes (especially the negative end). As a result, when 𝜃 on any occasion 

entered the low-information regions, estimation became imprecise, and CRI was high. 

Limitations 

A major limitation of this study is that the selection of magnitude values and scatter patterns 

was, to some extent, arbitrary (direction and order patterns were exhaustive, though). This was 

unavoidable because in order to perform ANOVA, each factor must have two or more levels. 

Given that magnitude and scatter were continuous variables, the only option was to specify several 

discrete values based on prior research and the authors’ discretion. If different values and patterns 

had been used, the results might have been different. To investigate to what extent this issue would 

change the conclusions, another simulation study was performed with a different set of magnitude 

values (0.25, 0.50, and 0.75) and some other scatter patterns (for example, equal amount of change 

across occasions, i.e., zero scatter). Results showed that the patterns of ANOVA results were not 

fundamentally altered, despite slight changes in the numerical values. Therefore, it is expected that 

the main conclusions from the ANOVA results hold, despite the arbitrariness in assigning magni-

tude values and scatter patterns. Nevertheless, it will be helpful to replicate the study with different 

sets of magnitude values and scatter patterns. Another source of arbitrariness was the number of 

testing occasions, which was four in this study. Other numbers of testing occasions should be 

studied in the future to determine how AMC functions across larger numbers of testing occasions. 
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Another limitation was that only two item banks were used in this study, and they shared a common 

set of discrimination parameters. A wider range of item banks should be examined to gauge the 

generalizability of the current findings. 

Conclusions 

This study investigated the effects of change patterns on the performance of AMC. When there 

was no change, AMC performed satisfactorily, as FPRs were between 0.05 and 0.07 under all 

conditions. When there was change, the magnitude of change had the largest effect on the ability 

of AMC to detect change. In order to reach a TPR level of 0.8, change magnitude generally needed 

to be at least 1.0. When magnitude was small, AMC appeared to be underpowered. Scatter and 

shape each could change TPR by 0.3 under mixed-directional change conditions, but they had little 

effect under unidirectional change conditions. 𝜃1 and its interactions had some effects with the 

practical item bank due to low test information at extreme 𝜃 values, but they had no effect with 

the ideal item bank. CRI was generally lower than 0.1 except under some extreme 𝜃1 conditions, 

indicating good change recovery. In general, the results support the use of AMC for identifying 

psychometrically significant intra-individual change, especially when the magnitude of change is 

large. Still, it is important to note that insignificant testing results under AMC may be due to 

insufficient power, likely because of an item bank with low information, instead of lack of true 

change. 

The results of this study have implications for the applications of AMC. Importantly, this study 

showed that AMC is robust to change patterns—its performance is primarily determined by the 

magnitude of change, not the scatter and the shape of the change pattern. This feature makes AMC 

an ideal framework for application because most practitioners are primarily concerned with the 

magnitude of change (e.g., has the student/patient improved? If so, how much?). In addition, when 

changes are mixed-directional across multiple occasions, practitioners are usually interested in 

comparing the trait level at the last occasion to the first occasion. This is exactly how net magnitude 

was defined in this study, and the results showed that net magnitude explained AMC performance 

even better than total magnitude. Moreover, the results using CRIs showed that change recovery 

was excellent under most conditions, meaning that AMC allows practitioners to obtain reliable 

estimates of change magnitude. 

The power of AMC warrants further discussion. In the applications of AMC in educational 

contexts (Phadke, 2017) and clinical contexts (Weiss et al., 2021), one of their major limitations 

was that because the power of AMC was unknown, it was impossible to assess how many 

students/patients with true changes went undetected (i.e., cases of false negatives). This study 

showed that to achieve a power of 0.8, at least a change magnitude of 1.0 standard deviation of   

is necessary under an ideal item bank (i.e., one with a flat test information function); an even larger 

change magnitude is needed for a practical item bank (i.e., one with a peaked test information 

function). In addition, extreme starting  values and mixed-directional changes lowered power. 

Therefore, it was likely that many students/patients with a smaller change magnitude went 

undetected in previous studies. Indeed, in its application to K–12 data, Phadke (2017) found that 

using the same LRT used in this study, only 25.3% of the students in the sample were detected as 

having change on their mathematics achievement over a full school year, which appears to be low. 

Based on the results of this study, it is possible that the true proportion of students with significant 

change was underestimated by AMC. 

Consequently, it is recommended that AMC practitioners estimate the change in trait levels 
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(e.g., the difference between the last occasion and the first occasion) regardless of the hypothesis 

testing results. When hypothesis testing detects a change, it can be trusted with high confidence, 

because this study showed that the FPRs of AMC can be controlled near the nominal level, 

meaning that the probability of false positives is generally low and the estimated change in trait 

levels can be trusted. When AMC does not detect a change, the estimated change in trait levels 

can still provide useful information. Using practical judgment, test administrators can decide 

whether such a magnitude might indicate a change and, if it does, whether it has practical 

significance. 

At a fundamental level, the power of AMC is strongly influenced by item bank characteristics, 

which was demonstrated by its performance at different trait levels under the practical item bank. 

To increase the power of AMC, it is suggested that test developers write items that are (1) 

informative (i.e., having high discriminations) and (2) well distributed in difficulty/location across 

the trait, which results in an item bank that provides more information at the extremes of the trait 

continuum. In addition, they can consider lengthening the CATs to improve the precision of trait 

estimation. 
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